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1 Data Overview

Our analysis utilized multiple data sources to in-
vestigate mobility outcomes and their relationships
with environmental and socioeconomic variables in
California counties. Air quality data was sourced
from the CDC’s publicly available datasets (Cen-
ters for Disease Control and Prevention (CDC),
2014). Specifically, we downloaded a PM2.5
dataset spanning from 2001 to 2014. This dataset
was filtered to include only California counties us-
ing an online filtering tool provided by the data
portal. This data was selected because it repre-
sents the oldest and most comprehensive air quality
information available for California counties.

Additionally, mobility outcomes and covariates
were obtained from the Opportunity Atlas project, a
collaboration between Opportunity Insights and the
U.S. Census Bureau (Opportunity Insights, 2024).
The Opportunity Atlas provides county-level data
related to economic mobility and its determinants.
We selected datasets labeled County-Level Trends
in Outcomes (1978-1992 Cohorts) by Parental In-
come, Race, and Gender and County-Level Covari-
ates. These datasets were downloaded from the
Opportunity Atlas website in CSV format, accom-
panied by detailed codebooks and methodological
descriptions.

We chose to integrate these datasets because
they offer complementary information. The PM2.5
dataset provided environmental quality indicators,
while the Opportunity Atlas data included socioe-
conomic metrics that are critical for understanding
mobility. By combining these sources, we aimed to
capture a more holistic view of factors influencing
mobility in California counties.

The datasets represent a mix of sample-based
and census-based data. For instance, the Opportu-
nity Atlas data combines near-census-level records,
such as federal income tax returns, with sample-
based sources like the American Community Sur-

vey. The granularity of the data is at the county
level, with each row representing aggregated met-
rics for a specific county. This aggregation limits
our ability to analyze individual-level variation but
provides valuable insights into regional patterns.
While this granularity allows for robust compar-
isons across counties, it may obscure intra-county
disparities or the experiences of specific demo-
graphic groups.

Our analysis is affected by several data chal-
lenges. The PM2.5 data and Opportunity Atlas
datasets do not perfectly represent the entire popu-
lation due to potential systematic exclusions. For
instance, undocumented populations or individuals
not filing tax returns may be underrepresented in
the Opportunity Atlas data. These exclusions could
introduce selection bias, particularly in understand-
ing outcomes for marginalized groups. Moreover,
some variables in the datasets were missing or in-
complete. For instance, data for certain years or
demographic subgroups were unavailable, which
limited the scope of our analysis. Missing data en-
tries were treated as non-informative and excluded
during preprocessing, which could introduce bias
if the missing data were not randomly distributed.

In the course of data cleaning and preprocess-
ing, we applied several steps to ensure relevance
and consistency. For the Opportunity Atlas data,
we focused exclusively on California counties and
selected columns relevant to the 1992 cohort. We
retained only aggregated data across race and gen-
der, indicated by pooled in the column names,
and standardized column names by removing re-
dundant substrings. For example, variables like
kfr_pooled_pooled_p50_1992 were renamed to
kfr_p50, representing the mean of the 50th per-
centile rank. Irrelevant columns, such as those
related to parental employment or state-level identi-
fiers, were dropped. For the air quality dataset, we
mapped county codes to county names and grouped
data by mean predicted PM2.5 values.



The cleaning and preprocessing decisions were
driven by the need to improve interpretability, re-
duce noise, and enhance computational efficiency.
By narrowing the focus to California counties and
relevant cohorts, we ensured that our models ad-
dressed specific research questions without being
confounded by extraneous variables.

Our datasets lack important variables that could
provide additional context. For example, data on
housing quality, crime rates, and education met-
rics such as teacher-student ratios or standardized
test scores are unavailable. These variables could
have allowed us to investigate how living condi-
tions and educational resources influence mobility
outcomes. Similarly, economic indicators like local
unemployment rates and economic growth trends,
as well as intersectional data combining race, so-
cioeconomic status, and immigration status, could
have provided insights into unique barriers faced
by specific groups.

Another limitation of the datasets is the missing
historical data for earlier years, which constrains
our ability to understand long-term trends. The
reliance on aggregated county-level data also in-
troduces challenges in interpretation, as it reflects
average trends and outcomes rather than individual-
level variations. This aggregation may obscure
the experiences of underrepresented groups within
counties and limits the generalizability of our find-
ings to smaller populations or subgroups.

Finally, our analysis must contend with potential
biases in the data. Selection bias could arise due
to systematic exclusions, and measurement error
might exist in variables such as air quality predic-
tions. Despite these challenges, the preprocessing
steps and data integration strategies enhance the
relevance and consistency of the datasets for our
research objectives.

2 Exploratory Data Analysis

Figure 1, a histogram of PM2.5 levels in 2001,
illustrates the distribution of the fine particulate
matter concentrations across different counties in
California. The majority of PM2.5 levels fall within
the range of 8 to 12, with fewer occurrences in
higher ranges (14 and above). This suggests that
most counties have good air quality, with a few
experiencing worse pollution. This information
establishes the context for examining how varying
levels of air pollution might influence long-term
socioeconomic outcomes.
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Figure 1: Distribution of PM2.5 in 2001.

Figure 2, a geographic map of PM2.5 levels, dis-
plays spatial variability in air quality across coun-
ties, with urban and industrial zones experiencing
higher concentrations of particulate matter. For
instance, South California and parts of the Cen-
tral Valley show significantly worse air quality
compared to Northern California and coastal areas.
This geographic disparity aligns with known pat-
terns of industrialization and urbanization, which
often correlate with socioeconomic inequalities. It
also motivates our questions of whether air quality
is linked to socioeconomic outcomes, as it iden-
tifies areas where environmental conditions may
disproportionately affect economically disadvan-
taged populations. Understanding where poor air
quality is concentrated allows for a more targeted
analysis of its potential long-term effects on resi-
dents’ economic mobility.

Figure 2: Geographic Distribution of PM2.5 Levels
across California Counties in 2001.

Figure 3, a geographic map of income ranks by
country, demonstrates a relationship between child-
hood neighborhoods conditions and adult economic
outcomes. Regions with higher PM2.5 levels, as
shown in Figure 2, often overlap with areas where
children from lower-income families experience
lower average income ranks in adulthoods. For
example, parts of the Central Valley and Southern



California show both poor air quality and reduced
socioeconomic mobility, while regions with bet-
ter air quality, such as coastal Northern California,
exhibit higher income ranks. This suggests that
childhood air quality is a potential predictor of
future socioeconomic outcomes, particularly for
those from disadvantaged neighborhoods.
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Figure 3: Geographic Distribution of Mean Income
Percentile across California Counties in Adulthood.

Figure 4 examines the relationship between
PM2.5 levels and average income ranks for indi-
viduals from various parental income percentiles.
There exists a consistent shape across all parental
income percentile groups, suggesting a shared un-
derlying relationship between air quality and future
socioeconomic outcomes. White the general shape
of this relationship remains similar, the magnitude
of the effect varies by parental income percentile.
For lower-income families (e.g., 1st and 25th per-
centiles), there is a slight clustering of lower in-
come ranks with higher PM2.5 levels. In contrast,
for higher-income families (e.g., 75th and 100th
percentiles), the same shape persists, but the in-
come ranks are generally higher than the other
parental income groups.

Figure 4: Relationship Between PM2.5 Levels and
Mean Percentile Rank by Parental Income.

In addition, Figure 5 provides a comparative
analysis of income ranks across different parental
income groups. Children from families in the low-
est income percentiles (1st and 25th) show signif-
icantly lower median income ranks. Combining

these two insights, it becomes evident that more
nuanced factors beyond air quality affect mobility
across parental income percentiles, which will be
explored in later sections.
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Figure 5: Distribution of Mean Percentile Ranks across
Parental Income Groups.

3 Research Questions

Research Question 1: Is there a causal relation-
ship between air quality at the county level and the
socioeconomic mobility of the county’s residents?

Answering the above question could help inform
public policy decisions. Specifically, knowing that
poor air quality in a county leads to worse eco-
nomic outcomes could be used to implement en-
vironmental regulations to improve air quality, in-
crease job opportunities and expand access to edu-
cational opportunities.

In order to answer this question, we plan to use
causal inference techniques since we are interested
in whether poor air quality causes lower economic
mobility, not just the correlation between those two
variables. Additionally, using causal inference al-
lows us to explore this relationship in a meaningful
way and account for some of the confounding vari-
ables which could misinform our results.

The limitations of using the causal inference
techniques of propensity scores and outcome re-
gression include the inability to account for all con-
founding variables and unobserved relationships
between variables. When we are not able to model
all confounders in the model, the causal effect of
our chosen variable (in this case, air quality) might
be distorted and we would only get a biased esti-
mate of its effect.

Research Question 2: Can we use the air quality
data of a county to predict the growth in income of
the county’s future residents?

This research question is essentially asking if
exposure to poor air quality as a child affects future



financial outcomes and economic mobility. Know-
ing the answer to this question can tell authorities
where to direct medical resources and environmen-
tal legislation. It can also inform residents about
the outcomes for their kids and give them an oppor-
tunity to factor this into their decision to live in a
given county.

To build this predictive model, we will be com-
paring Generalized Linear Models (GLMs) and
non-parametric models. Of the techniques we
learned in the class, these are the ones best suited
for predictive models and can be trained with sev-
eral features. Additionally, these models are quite
interpretable, which is useful in answering and an-
alyzing the research questions.

The limitations of using GLMs for prediction
include assuming that a linear (or nearly linear)
relationship exists between the variables of inter-
est. If the relationship was more complex, we are
usually not able to model that using only GLMs.
In the case of the non-parametric methods we used
such as decision trees and random forests, there
are concerns regarding the model overfitting to the
training data as well as the model not being very
interpretable.

4 Prior Work

Source 1: “Childhood PM2.5 Exposure and
Upward Mobility in the United States." (Kings-
bury Lee et al., 2024)

In the research article published by PNAS, re-
searchers seek to understand the relationship be-
tween childhood air pollution exposure and inter-
generational mobility (Kingsbury Lee et al.). The
justification for this research is that air pollution’s
impact on economic opportunities are not as well
understood as air pollution’s impact on health out-
comes. Our research question seeks to understand
this relationship as well for similar reasons. Like
our research, they use PM2.5 levels and data from
the Opportunity Atlas to estimate county-level as-
sociations, but use a different cohort. Researchers
in the article look at children born in 1980 consid-
ering exposure in infancy and looking at outcomes
for these children measured in 2015. We instead
consider mobility from a 1990 cohort considering
childhood exposure from 8-18 years old (multi-
year air quality data) and measuring outcomes in
2019.

In the article, the researchers cross-validate their
results using entropy balancing, inverse probability

of treatment weighting, and generalized propen-
sity score matching for continuous treatments, and
they use a larger set of covariates for which they fit
hierarchical models and perform a sensitivity anal-
ysis for unmeasured confounding to validate the
robustness of their results. Our methods were more
simple, using propensity weighting to address con-
founding, but with limited confounders available to
us. We also attempted to cross-validate results by
utilizing outcome regression. We did not consider
sensitivity analysis. They find that there is a sta-
tistically significant negative relationship between
PM2.5 exposure during infancy and earnings in
adulthood.

Source 2: "Prenatal Exposure to Air Pollution
and Intergenerational Economic Mobility: Evi-
dence from U.S. County Birth Cohorts." (O’Brien
et al., 2018)

Another source we used is a published research
article considering how exposure to air pollution
measured by TSP in the birth year affects intergen-
erational mobility outcomes of children in adult-
hood with a focus on how this difference varies
based on income of families (O’Brien et al.). TSP
is believed to follow PM2.5 making it relevant to
our research (we look at PM2.5). They link eco-
nomic mobility at the county level for children born
between 1980 and 1986 with TSP particulates for
their birth year. Adulthood outcomes are measured
at age 26. We also look at air pollution effects on
mobility outcomes of children in adulthood at the
county level, but consider exposure from ages 8-18,
outcomes measured at 27, and a later cohort year.

Both of our studies control for parent income
percentiles. Researchers in the article estimate
multivariate linear regression models for each co-
hort, regressing economic mobility on TSP levels.
They adjust their models for confounders but do not
specify the exact method used. They do however
state that they grouped confounders into county
economic characteristics and characteristics of the
birth cohort. They also performed a sensitivity
analysis. Like them, we used separate models for
each birth cohort based on parent income similar to
this article, but only had access to economic char-
acteristics of the county and estimates with high
variance of racial backgrounds. We performed out-
come regressions, linear regressions, general linear
regression models to estimate mobility based on
air quality by year, but instead considered the years
when children were 8-18.



Researchers in this article found that higher lev-
els of TSP produced less upward economic mobil-
ity for children from low-income families whereas
children from high-income families were not af-
fected by TSP levels. This suggests that parental
income may act as a moderator on this effect.

5 Causal Inference

5.1 Methods

We use the county level mean percentile individual
income controlling for mean parent income per-
centile for our mobility outcomes. This data is
collected in 2019 when children in the study are 27.
Parent income percentile is taken when the children
are born in 1992.

We use air quality from the CDC for our treat-
ment. PM2.5 measurements from the CDC are
provided on a linear scale at a daily level for each
county. We rolled up this data to get a yearly mean
of the median air quality for each county. To bina-
rize air quality based on PM2.5 levels, we classify
values below 12 as 1 (indicating good quality) and
values of 12 or higher as 0 (indicating poor quality),
as defined by the U.S. Environmental Protection
Agency’s Air Quality Index (United States Envi-
ronmental Protection Agency (EPA), 2016). We
considered air quality from 2001 because this was
the oldest data we had available. This data corre-
sponds to when the children are 8-9.

For confounders, we considered neighborhood
characteristics aggregated at the county level from
2000 data. We believe these characteristics have the
most direct influence on county level air quality in
2001 as opposed to older data and also encompass
the information and influence of previous neighbor-
hood characteristics. We tested 7 characteristics
based on availability. Available characteristics in-
cluded employment rate, fraction college gradua-
tion, fraction of foreign population, gini coefficient,
median household income, per capita income, frac-
tion below poverty level, and single parent frac-
tion. We compared the distributions between each
county’s characteristics by air quality, and selected
4 whose distributions were visibly different by air
quality group. We used these as confounders for
propensity weighting based on the significance of
their relationship. We selected fraction college
graduates, foreign share, per capita income, and
fraction poor as our confounders. Based on re-
search, we do not believe that any colliders exist in
our datasets.

We used logistic regression to calculate propen-
sity scores for the effect of our confounders on
the treatment, and applied inverse weighting to ac-
count for the effect of these confounders in our
ATE scores.
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Figure 6: Directed Acyclic Graph

5.2 Results

The method of Inverse Propensity Score Weight-
ing revealed a negative relationship between poor
air quality (measured as PM2.5 levels) and up-
ward mobility across all parental income percentile
groups. As shown in Table 1, the Average Treat-
ment Effect (ATE) ranged from -0.11 for the 1st
percentile group to -0.19 for the 100th percentile
group. While these estimates indicate a consistent
negative trend, the magnitudes are relatively small,
suggesting that the relationship between air quality
and upward mobility is weak.

Percentile Group ATE
Ist -0.1134383984643135

25th -0.136193979766845

50th -0.14781010990141114
75th -0.16395000749596048
100th -0.18699107997999328

Table 1: Estimated Treatment Effects for Different Per-
centiles using Inverse Propensity Score Weighting

Before proceeding with the Outcome Regres-
sion method, we calculated the Pearson correla-
tion coefficients to evaluate the linearity between
air quality (PM2.5 levels) and mobility outcomes
(mean percentile rank) across different parental in-
come groups. The results, summarized in Table
2, indicate weak or negligible linear relationships
across all income percentiles. For instance, the



Pearson correlation coefficient for the 1st percentile
group was -0.0426, while for the 100th percentile
group it was -0.1506, both suggesting a lack of
strong linear association.

Given these findings, we concluded that the as-
sumption of linearity required for the Outcome
Regression method is not satisfied. As a result,
we decided not to draw any conclusions using this
method, as it could lead to inaccurate or misleading
results in the absence of a linear relationship.

Percentile Group | Correlation Coefficient

Ist -0.0425597351687
25th -0.0151300552488
50th -0.108009689938
75th -0.16907848207
100th -0.150576847671

Table 2: Pearson Correlation Coefficients for PM2.5 and
Mean Percentile Rank by Parental Income Percentile

In conclusion, the use of Inverse Propensity
Score Weighting indicates that children raised in ar-
eas with poorer air quality are, on average, slightly
less likely to experience upward economic mobility
as adults compared to those from areas with better
air quality. However, the observed effect is small
and not strongly conclusive, suggesting that while
air quality may play a role, its impact on economic
mobility is limited.

5.3 Discussion

Currently, the results from our analysis support
the need for further investigation, as the observed
weak negative causal relationship between air qual-
ity and upward mobility may be influenced by lim-
itations in our methods and data. One significant
limitation is the potential presence of unaccounted
confounders, such as differences in access to qual-
ity education, healthcare, regional economic op-
portunities, or systemic factors like incarceration
rates, which disproportionately affect certain de-
mographics and may independently influence so-
cioeconomic mobility. Incorporating these factors
into the analysis is essential, as incarceration rates,
particularly among marginalized groups, can signif-
icantly impact family stability, economic prospects,
and access to opportunities, potentially confound-
ing the observed relationship between air quality
and mobility.

Additionally, our data lacks the granularity
needed to capture variations within counties or

neighborhoods, where individual-level factors and
local policies might significantly affect the ob-
served relationships. The assumption of linearity
in the Outcome Regression method was also not
satisfied, further reducing our confidence in some
of the conclusions drawn from this method. These
methodological challenges underscore the impor-
tance of incorporating additional contextual and
demographic variables to refine the analysis.

Given these limitations, we are only moderately
confident in asserting that there is a weak negative
causal relationship between air quality and upward
mobility. The small magnitudes of the observed
effects suggest that the relationship, if present, is
weak and potentially overshadowed by other fac-
tors.

6 Prediction

6.1 Methods

The goal for our prediction problem is to deter-
mine how well county level air quality exposure
can predict county mobility outcomes controlling
for parental income. Years from 2001-2010 were
considered. These are the years for which the chil-
dren for the study are 8-18 years old. Children
sampled for the outcomes measured in our dataset
are identified as having lived in their representative
county until at least 18, so measured county air
qualities after 2010 may not accurately represent
exposure. The mean PM2.5 concentration for each
of these years were treated as the features for each
county and the mean percentile of individual in-
come at 27 was treated as the response variable for
our models. We had about 52 counties worth of
samples after processing for each parent percentile,
and we procured a 30% validation set from these.
We assume parental income is the major modifier
of the relationship of exposure on outcomes, so
we control for this by using different models based
on parental income. We consider parametric and
non-parametric models and compare the results of
both across all parent percentile groups.

For our parametric models we set up a general-
ized linear model. Because our outcome (percentile
of individual income) is a continuous random vari-
able, we considered a Gaussian likelihood. Using
a Gaussian likelihood also made sense because our
plots of the distribution of outcomes for each par-
ent percentile are roughly Gaussian matching our
assumption . We used the identity function as our
link and inverse link taking on the assumption that



the relationship between our mean outcomes and
air quality are linear with Gaussian noise.

For non-parametric methods, decision trees, ran-
dom forests, and neural networks were considered.
Neural networks were ruled out as a good fit due to
their complexity and tendency to overfit. Decision
trees and random forests both make no assump-
tions of the data and can be used for regressing
on continuous outcomes making them suitable for
this task. Random forest offers the added benefit
of ensembling to add uncertainty to the model and
reduce overfitting. We compared all models with
a naive estimator consisting of the mean outcome
for each parent percentile group.

We evaluated both models on the basis of root
mean square error, or RMSE.

6.2 Results

Parametric models: The root mean squared error
was calculated for all five models, revealing a com-
parable error for all of them and the highest error
for the 1st percentile income earners data.

The effects of pollution in different years varied
significantly, and the trends in these variations were
consistent across the five different income groups.
Specifically, the air quality in 2004, 2009 and 2013
were much more consequential to the outcome vari-
able compared to the other years. This suggests
that environmental legislation during those years
potentially had significant impacts on the air qual-
ity.

Non-parametric models: The random forests
using the naive feature set performed best when
predicting outcomes for the children born in the 1st,
25th, 50th, and 100th percentiles of parent income.
This is likely due to decision tree models yielding a
higher variance. The decision tree model predicting
outcomes for the 75th percentile of parent income
performed better than both random forests, but the
difference was statistically insignificant.

The RMSE of the best model for each percentile
group was around 0.02 (+/- 0.01) percentile points.
The 1st parent percentile of income had the highest
RMSE. All models performed better than the naive
estimator with statistical significance ( 30-70% im-
provement), suggesting that air quality concentra-
tion offers predictive value. This confirms that air
quality does have predictive value, though it does
not speak to whether air quality may be a proxy for
some other variable that directly impacts outcomes.

Below we plot the distributions of the outcome

predictions against the distribution of actual out-
comes. Figure 7 indicates success in the models to
capture the general mode of the outcome distribu-
tion. The prediction distributions are concentrated
around this mode.
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Figure 7: Distribution of the Random Forest Predicted
Outcomes against Real Outcomes by Parent Income
Percentile.

The size and sparsity of the dataset may have re-
sulted in the models failing to learn the whole range
of the domain, resulting in a failure to predict the
full range of available outcomes and a tendency to
underestimate higher outcomes. This is supported
by the plots of the residuals. Residuals were plotted
for the random forest models and indicated a vari-
able positive bias across the models. This suggests
a tendency across the models to underestimate out-
comes. This could be caused by nonlinearity in the
data that are not captured by the features, but also
the above mentioned reasons.

Figure 8: Residual Plots for Random Forests Models by
Parent Income Percentile.

Overall, the results indicate that county air qual-
ity can be used to predict children mobility out-
comes, but this predictive power may not be ho-
mogenous across different populations, having the
least predictive power for children of top earners

6.3 Discussion

Both models revealed comparable findings. GLMs
with the right assumptions and non-parametric
models are worth applying again to cross-validate
findings in future datasets.

To evaluate the goodness of fit of the best
performing non-parametric models, the random
forests, on the data, we used 5-fold cross-validation
to produce 5 RMSE scores for each model and
computed the average RMSE overall. This score
is 0.025. This score should be used for compara-
tive evaluation against other models and against the



variance, with a smaller value indicating a better
fit. Because the score is obtained via predictions
on withheld data (cross-validation), it accounts for
overfitting.

Using the fitted Gaussian generalized linear
model to visualize the effects of each year on the in-
come percentile revealed that the effect of air qual-
ity in 2012 had a large negative effect on income
percentiles. On the other hand, the effect of 2011
air quality on the outcome was negative and small.
Across the features visualized by importance using
the fitted decision trees, no undisputed single year
was identified as most influential. No relationship
between influential years was identified either (i.e.
if exposure earlier on is more predictive than later
on).
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Figure 9: Gaussian GLM Coefficients for 50th Per-
centile.

Figure 10: Plots of Feature Importance for Each Deci-
sion Tree Modeling by Parent Percentile.

The Gaussian GLM is limited as it relies on the
assumptions we made. After the analysis, the Gaus-
sian assumption still stands out as a reasonable op-
tion, but rather than taking a frequentist approach,
adding a correct, informative Bayesian prior could
improve predictive power. Both the GLM and the
non-parametric models are also limited by a lack
of data. Additional data and more complex feature
engineering can improve the ability of the random
forests to capture complex relationships. Without
enough samples, the random forest models used
cannot capture the full range of outcome values.

Further, the predictive power may be limited by the
use of naive features used to capture an otherwise
complex relationship between air quality and mo-
bility outcomes. This may have resulted in higher
uncertainty in our results.

7 Conclusions

7.1 Outcomes summary

Our exploration of the first research question, we
considered the causal impact of air quality on so-
cioeconomic mobility. Our causal inference meth-
ods suggest a negative relationship between the two.
This may support the conclusion that lower county
air quality can lower children’s future incomes.

In our exploration of the predictive value of
county air quality across youth’s developmental
years on their mobility outcomes, we confirmed
that this information can be used to predict out-
comes, but the predictive power is weakest for the
highest income earners in the county. We also find
that the pollution levels of different years have non
homogeneous associations with the outcome vari-
able, but with no identifiable pattern.

7.2 Critical evaluation

Some limitations of the data we use include:

* The dataset is not very granular. There is great
variation in air quality within counties, so re-
ducing each county to one data point prevents
us from seeing how specific neighborhoods
might be affected differently. This may have
negative implications for invoking the SUTVA
assumptions.

* We use air quality data from 2001-2014 and
income data from 2014, which only models
the effects of air quality on income for one
generation of a county’s residents. In order
to generalize the results and view historical
trends, we would need to complete such anal-
yses for several generations.

* It is not possible to account for all possible
confounders given our limited dataset for the
given counties and timelines. Based on similar
research, a large set of confounders is needed
for this problem because a variety of envi-
ronmental and social factors are believed to
affect mobility outcomes. Given further time
and resources, this is something that should
be considered in future studies.



The domain knowledge we are missing includes
a more thorough model of the relationship between
air quality and economic outcomes which includes
all related confounder, collider and intermediate
variables. One question that we might ask a do-
main expert would be to identify some important
confounding variables that we have missed, and
how we would access the data for those variables.
Given that information, we can account for it in our
causal inference models and obtain more accurate
results.

Our results remain fairly consistent across dif-
ferent methods for both questions. One thing we
might change is the number of outcome variables
we are looking at. Since socioeconomic mobil-
ity could be characterized by many other variables
such as high school graduation rates, college grad-
uation rates, net income increase and change in
income percentile, we might be able to infer more
about our questions by using these different out-
come variables. A user interpreting this data should
keep in mind that we are using only one outcome
variable currently, and using a few more would be
more informative.

We see a general trend in our results of poorer
air quality leading to worse economic outcomes.
This feels plausible since poorer air quality cor-
relates with lower income demographics, lesser
developed neighborhoods and lesser access to ed-
ucation, opportunities and mobility. If we were to
use other outcome variables that serve as a proxy
for socioeconomic mobility, the results would look
similar and show a negative relationship between
air quality and mobility.

7.3 Recommendations

One follow-up study could look at more granu-
lar data at the city or ZIP code level and analyze
the relationship between air quality and graduation
rates or change in income percentile. This way, we
could look at variations across different neighbor-
hoods in a county and not just compare counties
to each other. Such a study could also incorporate
multiple outcome variables that serve as proxies
for socioeconomic mobility and examine whether
the negative relationship between air quality and
mobility presents itself in all the different cases of
outcome variables.

Actions that could be taken include passing laws
that monitor air quality in high-risk areas and levy
taxes on the companies creating this situation. The

government could also designate certain areas as
industrial areas that would be zones where factories
can operate and people do not reside, so that they
do not experience the negative effects of pollution.

* Such an idea might be feasible in large
states/counties with free government land to
shift industries to. However, it is not possible
to enact this in densely populated areas with-
out room to shift people or industries. The
government might be able to implement such
a plan, but this relies on public support and
research-backed approval. The companies
that would be taxed for polluting the envi-
ronment would object to this idea, as would
the residents who are asked to relocate to a
cleaner neighborhood.

* Individuals that would have to relocate would
face great inconveniences to do so, but might
benefit in the long run because of better fi-
nancial outcomes for their children. Environ-
mental advocacy groups would appreciate the
government prioritizing the health of citizens
over the profit of companies. However, the
corporations that stand to lose from such a
plan would be affected financially. Speaking
to an individual who objects to the plan might
entail informing them of the long-term bene-
fits of living in a cleaner environment in terms
of health, outcomes and mobility.

* The values guiding this recommendation in-
clude setting up an equitable system where
communities that are most affected by poor
air quality are given an option to remedy that
solution, and the companies that cause the pol-
lution are held accountable for their actions.
The proposal seeks environmental justice that
helps affected communities as well as takes
steps to preserve nature and natural resources.

7.4 Github Code: (PM25InferenceCode)
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